Limit Shape of Minimal Difference Partitions and Fractional Statistics
نویسندگان
چکیده
منابع مشابه
A note on limit shapes of minimal difference partitions
We provide a variational derivation of the limit shape of minimal difference partitions and discuss the link with exclusion statistics. This paper is dedicated to Professor Leonid Pastur for his 70th anniversary. A partition of a natural integer E [1] is a decomposition of E as a sum of a nonincreasing sequence of positive integers {hj}, i.e., E = ∑ j hj such that hj ≥ hj+1, for j = 1, 2 . . .....
متن کاملThe thermodynamic limit for fractional exclusion statistics
I discuss Haldane's concept of generalised exclusion statistics (Phys. Rev. Lett. 67, 937, 1991) and I show that it leads to inconsistencies in the calculation of the particle distribution that maximizes the partition function. These inconsistencies appear when mutual exclusion statistics is manifested between different subspecies of particles in the system. In order to eliminate these inconsis...
متن کاملasymptotic property of order statistics and sample quntile
چکیده: فرض کنید که تابعی از اپسیلون یک مجموع نامتناهی از احتمالات موزون مربوط به مجموع های جزئی براساس یک دنباله از متغیرهای تصادفی مستقل و همتوزیع باشد، و همچنین فرض کنید توابعی مانند g و h وجود دارند که هرگاه امید ریاضی توان دوم x متناهی و امیدریاضی x صفر باشد، در این صورت می توان حد حاصلضرب این توابع را بصورت تابعی از امید ریاضی توان دوم x نوشت. حالت عکس نیز برقرار است. همچنین ما با استفاده...
15 صفحه اولInteger partitions and exclusion statistics: Limit shapes and the largest part of Young diagrams
We compute the limit shapes of the Young diagrams of the minimal difference p partitions and provide a simple physical interpretation for the limit shapes. We also calculate the asymptotic distribution of the largest part of the Young diagram and show that the scaled distribution has a Gumbel form for all p. This Gumbel statistics for the largest part remains unchanged even for general partitio...
متن کاملOn Some Fractional Systems of Difference Equations
This paper deal with the solutions of the systems of difference equations $$x_{n+1}=frac{y_{n-3}y_nx_{n-2}}{y_{n-3}x_{n-2}pm y_{n-3}y_n pm y_nx_{n-2}}, ,y_{n+1}=frac{y_{n-2}x_{n-1}}{ 2y_{n-2}pm x_{n-1}},,nin mathbb{N}_{0},$$ where $mathbb{N}_{0}=mathbb{N}cup left{0right}$, and initial values $x_{-2},, x_{-1},,x_{0},,y_{-3},,y_{-2},,y_{-1},,y_{0}$ are non-zero real numbers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2019
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-019-03513-5